Sponsorlu Bağlantı

+ Cevap Ver
2 sonuçtan 1 ile 2 arası

Konu: Asal Sayıların Tarihçesi - Asal Sayıların Tarihi Süreci

  1. #1
    ModeratoR
    Sponsorlu Bağlantı

    Standart Asal Sayıların Tarihçesi - Asal Sayıların Tarihi Süreci

    Sponsorlu Bağlantı

    Asal Sayıların Tarihçesi - Asal Sayıların Tarihi Süreci


    Asal sayılar

    Asal sayılar, yalnız ve yalnız iki böleni olan doğal sayılardır. Kendisinden ve 1 sayısından başka böleni olmayan, 1'den büyük pozitif tam sayılar biçiminde de tanımlanmaktadır.(kendisinden küçük asal sayıların hiçbirine tam bölünmeyen sayılardır) Yüzden küçük asal sayılar 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ve 97 dir.

    Öklid (Euklides)'ten beri asal sayılar sonsuz olduğu bilinmektedir, fakat asal sayılar hakkında pek çok başka soru hala daha cevapsızdır. Bunlardan en ünlü ikisi aralarındaki fark iki olan asal sayılar (örneğin 11 ve 13, veya 29 ve 31) hakkındaki ikiz asallar konjektürü ve asal sayıların doğal sayılar içersindeki dağılımı hakkındaki Riemann Hipotezidir. Sayılar teorisi'nin en önemli uğraşı asal sayılar hakkındaki bu tür sorulardır. Asal sayılar ayrıca kriptografi alanının da yapı taşlarıdır.

    Asal sayılarla ilgili Goldbach hipotezi halen kanıtlanamamıştır: Her çift sayı iki asal sayının toplamı mıdır? Örneğin:

    * 4 = 2 + 2
    * 6 = 3 + 3
    * 8 = 3 + 5
    * 10 = 3 + 7
    * 12 = 5 + 7
    * 14 = 3 + 11
    * 16 = 3 + 13
    * 18 = 5 + 13
    * 20 = 3 + 17
    * 22 = 3 + 19
    * 24 = 5 + 19
    * 26 = 7 + 19


    300 Basamaklı bir Asal sayı:

    30395687838640197740576586692903457745879399331434 826309477264645328 30627227012776329366160631440881733123728826771238 795387094001583065 67338328279154499698366071906766440037074217117805 690872792848149112 02228633214487618337632651208357482164793399296124 991731983621930427 4280243803104015000563790123



    1'in asallığı

    19. yüzyıl'a kadar, çoğu matematikçi 1'i asal sayı olarak kabul ediyorlardı ve 1'in asal olarak kabul edilmesine dayanarak yapılan birçok çalışma geçerliliğini hâlâ sürdürmektedir,örneğin Stern ve Zeisel'in çalışmaları. Henri Lebesgue, çalışmalarında 1'i asal olarak ele alan son profesyonel matematikçi olarak bilinir. 1'i asal olarak ele alırsa bazı teoremlerde değişikliğe gidilmesi gerekir. Örneğin tüm pozitif tam sayıların "yalnız bir şekilde" asal sayıların çarpımları şeklinde yazılabileceğini söyleyen Aritmetiğin temel teoremi, nitekim geçmişteki asal sayı tanımına göre geçerli değildir. [1][2][3] .
    Resimdeki örnek 11 in asal olduğunu ve 12 nin asal olmadığını gösteriyor.

    Asal Bölenler

    Aritmetiğin temel teoremi 1 den büyük tüm tam sayıların asal sayıların çarpımları şeklinde yazılabileceğini üstelik yazımın da yalnız bir şekilde (teklik) olacağını söyler ( asal çarpanların değişik sıralanması hariç). Bir sayının asal çarpanlara ayrılmasında bir asal sayı birden fazla tekrar edebilir. Dolayısıyla asal sayılar, doğal sayıların "temel inşa taşları" olarak düşünülebirlir.Örneğin, 23244 ü şu şekilde asal çarpanlarına ayırabiliriz.

    23244 = 2^2 \times 3 \times 13 \times 149

    ve 23244 ün diğer asal çarpanlara ayırış şekilleri yukarıdaki ile aynıdır, fakat asal sayıların sıralaması değişik olabilir. Büyük sayılar için değişik asal çarpanlara ayırma algoritmaları vardır.




    Öyle bir zamanına geldim ki yaşamın, ölüme erken sevgiye geç,
    Yine gecikmişim bağışla sevgilim, sevgiye on kala ölüme beş..

    )̲̅ζø̸√̸£ ч̸ø̸µ

  2. #2
    Misafir
    Guest

    Icon9 Cevap: Asal Sayıların Tarihçesi - Asal Sayıların Tarihi Süreci

    çok iyi ellerinize sağlık ama kim çıkardı falan tarihi kaç yılında çıktığını söylememişsinizzz

+ Cevap Ver
  • Bu konuyu beğendiniz mi?

    Asal Sayıların Tarihçesi - Asal Sayıların Tarihi Süreci

    Güncel Beğeni


    Değerlendirme: Toplam 32 oy almıştır, ortalama Değerlendirmesi 3,47 puandır.

Konu Bilgileri

Users Browsing this Thread

Şu an 1 kullanıcı var. (0 üye ve 1 konuk)

Benzer Konular

  1. Cevaplar: 0
    Son Mesaj: 30.01.13, 01:46
  2. Cevaplar: 3
    Son Mesaj: 17.10.12, 18:05
  3. Tam Sayıların Tarihçesi - Tam Sayıların Tarihi
    By RedBuLL in forum Matematik Bilimleri
    Cevaplar: 0
    Son Mesaj: 19.04.12, 15:57
  4. Cevaplar: 0
    Son Mesaj: 08.01.12, 22:54
  5. Cevaplar: 0
    Son Mesaj: 28.12.10, 22:26

Yetkileriniz

  • Konu Acma Yetkiniz Var
  • Mesaj Yazma Yetkiniz Var
  • Eklenti Yükleme Yetkiniz Yok
  • Mesajınızı Değiştirme Yetkiniz Yok
  •  

Search Engine Friendly URLs by vBSEO 3.6.0 RC 2 ©2011, Crawlability, Inc.